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Introduction to the Unscented Transform

Uncertainty Quantification (UQ)

Consider a random variable X ∈ Rn and a nonlinear function
f : Rn → Rm.

Fundamental question of UQ:
Given information about the distribution of X what can we say about
the distribution of f(X)?
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Introduction to the Unscented Transform

Uncertainty Quantification (UQ)

Example:

X ∼ N
(

1,
1

100

)
, with distribution p(x) =

exp(−50(x− 1)2)√
π/50

f(x) = x10

E[f(X)] =

∫ ∞
−∞

f(x)p(x) dx =

∫ ∞
−∞

x10
exp(−50(x− 1)2)√

π/50
dx ≈ 1.5

x

p(x)

E[X]

f

f(x)

p(f(x))

E[f(X)]

Deanna Easley (GMU) November 22, 2019 5 / 40



Introduction to the Unscented Transform

Uncertainty Quantification (UQ)

Consider a random variable X ∈ Rn and a nonlinear function
f : Rn → Rm.

Fundamental question of UQ:
Given information about the distribution of X what can we say about
the distribution of f(X)?

When distribution of X is fully known
When we only know moments of X (mean, variance, etc.)
When we have a finite collection of samples of X
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Introduction to the Unscented Transform

Monte Carlo Simulation

Sample {Xi}Ni=1 from p(x)

Estimate E[f(X)] by the average
1

N

N∑
i=1

f(Xi)

Problems: Need to know p and be able to sample it, need large N ,
f may be slow.
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Introduction to the Unscented Transform

Unscented Transform

Goal: Estimate E[f(X)] =

∫
f(x)p(x) dx

Idea: Generate quadrature points for the weighted integral

Quadrature: E[f(X)] ≈
N∑
i=1

wif(xi) where xi are nodes and wi are

weights for i = 1, ..., N

Degree-of-exactness: the largest value of m so that all
polynomials of degree m and below are integrated exactly.
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Introduction to the Unscented Transform

Unscented Transform

One point quadrature: σ1 = µ, w1 = 1∫
f(x)p(x) dx ≈ w1f(σ1) = f(µ)

Exact for f(x) = ax+ b (degree-of-exactness = 1)∫
(ax+ b)p(x) dx = a

∫
xp(x) dx+ b

∫
p(x) dx = aµ+ b
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Introduction to the Unscented Transform

Unscented Transform

Julier’s Idea: Suppose we choose the right nodes so that our
quadrature has degree of exactness 2, i.e. matches the first two
moments exactly.

The σ–points of the Unscented Transform

Suppose we are given the first two moments, the mean µ ∈ Rd and the
covariance C ∈ Rd×d. Then the σ–points are defined by

σi =

{
µ+
√
dCi if i = 1, . . . , d

µ−
√
dCi−d if i = d+ 1, . . . , 2d

Note:
d∑

i=1

√
Ci

√
C
>
i = C
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Introduction to the Unscented Transform

Empirical mean

E[X] =
1

2d

2d∑
i=1

σi

=
1

2d

d∑
i=1

(µ+
√
dCi) +

1

2d

2d∑
i=d+1

(µ−
√
dCi−d)

=
1

2d

d∑
i=1

(µ+���√
dCi + µ−�

���√
dCi)

=
1

2d

d∑
i=1

2µ

=
1

2d
(2dµ)

= µ
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Introduction to the Unscented Transform

Empirical covariance

E[(X − µ)(X − µ)>] =
1

2d

2d∑
i=1

(σi − µ)(σi − µ)>

=
1

2d

[
d∑
i=1

√
dCi
√
dC
>
i +

2d∑
i=d+1

√
dCi−d

√
dC
>
i−d

]

=
1

2d
[dC + dC]

=
1

2d
(2dCµ)

= C
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Introduction to the Unscented Transform

Unscented Transform

If p(x) is Gaussian, then the Unscented Transform is good at
approximating E[f(X)]. But what if it isn’t?

What about the next two moments?

Skewness: measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean

x

y

Kurtosis: measure of the “tailedness” of the probability distribution of a
real-valued random variable
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Introduction to the Unscented Transform

Tensors

Tensors are basically multidimensional matrices.

Let x ∈ Rd. Then xx> is a d-by-d matrix. Thus the ij-entry of xx> can
be represented as follows

(xx>)ij = xixj = (x⊗ x)ij = (x⊗2)ij

Thus we can represent the covariance as

C = E[(X − µ)⊗2] =

∫
(x− µ)⊗2p(x) dx
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Introduction to the Unscented Transform

More formally, the skewness is defined as

S =

∫
(x− µ)⊗3p(x) dx

where (x− µ)⊗3 = (x− µ)⊗ (x− µ)⊗ (x− µ) is a 3-tensor so

Sijk =

∫
(x− µ)i(x− µ)j(x− µ)kp(x) dx

The kurtosis is defined as

K =

∫
(x− µ)⊗4p(x) dx

where (x− µ)⊗n = (x− µ)⊗ (x− µ)⊗ · · · ⊗ (x− µ)︸ ︷︷ ︸
n times
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Rank 1 Decomposition of Higher Moments

Eigendecomposition

We are going to assume from now on that all moments are symmetric,
namely

Mi1···in = Mσ(i1···in)

for any permutation σ.

Recall that a symmetric matrix A ∈ Rd×d with d linearly independent
eigenvectors ui can be factored as

A = UΛU>

where U is the square d× d matrix whose ith column is the
eigenvector ui of A, and Λ is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues λi.

A =
∑

λiuiu
>
i

=
∑

λiu
⊗2
i
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Rank 1 Decomposition of Higher Moments

Eigendecomposition for Higher Order Tensors

Our goal is to do the same thing for higher order tensors and give them
a formula of what that might look like, i.e.

S =
∑
i

x⊗3i

K =
∑
i

x⊗4i
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Rank 1 Decomposition of Higher Moments

Finding the Eigendecomposition Numerically

Solving the characteristic polynomial is not an option for dimension
d ≥ 5 (no solution to general quintic).

Power Iteration:

Random initial condition: ~x =

d∑
i=1

ci~ui (where ci = 〈~x, ~ui〉)

Multiply by A: A~x =

d∑
i=1

ciA~ui =

d∑
i=1

ciλi~ui

Repeat: Ak~x =

d∑
i=1

ciλ
k
i ~ui

Largest eigenvalue wins.
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Rank 1 Decomposition of Higher Moments
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Rank 1 Decomposition of Higher Moments
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Rank 1 Decomposition of Higher Moments
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Rank 1 Decomposition of Higher Moments
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Rank 1 Decomposition of Higher Moments

Power iteration blows up to∞, so normalize

Normalized Power Iteration (NPI)

x = rand(d,1);
for k=1:10,

x = A*x;
x = x/norm(x);

end
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Rank 1 Decomposition of Higher Moments

Multiplying a 2-Tensor with a 1-Tensor

Recall that for a matrix A ∈ Rd×d and v ∈ Rd matrix vector
multiplication

(Av)i =

d∑
j=1

Aijvj

So we define two natural products

(A×1 v)i =

d∑
j=1

Ajivj = (A>v)i

(A×2 v)i =

d∑
j=1

Aijvj = (Av)i

Note that multiplying a tensor by a vector, the order decreases by 1.
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Rank 1 Decomposition of Higher Moments

Multiplying a 3-Tensor with a 1-Tensor

Applying the same line of thinking with tensors, for a tensor S ∈ Rd×d×d
and vector v ∈ Rd, tensor vector multiplication goes as follows

(S ×1 v)ik =

d∑
j=1

Sjikvj

(S ×2 v)ik =

d∑
j=1

Sijkvj

(S ×3 v)ik =

d∑
j=1

Sikjvj

each case resulting in a d× d matrix.
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Rank 1 Decomposition of Higher Moments

Multiplying a 3-Tensor with a 1-Tensor

Let S ∈ R3×3×3 and v ∈ R3 such that

S =

S111 S121 S131

S211 S221 S231

S311 S321 S331




S112 S122 S132

S212 S222 S232

S312 S322 S332




S113 S123 S133

S213 S223 S233

S313 S323 S333




S×1v =

S111v1 + S211v2 + S311v3 S112v1 + S212v2 + S312v3 S113v1 + S213v2 + S313v3
S121v1 + S221v2 + S321v3 S122v1 + S222v2 + S322v3 S123v1 + S223v2 + S323v3
S131v1 + S231v2 + S331v3 S132v1 + S232v2 + S332v3 S133v1 + S233v2 + S333v3
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Rank 1 Decomposition of Higher Moments

Eigenvectors of a 3-Tensor

(S ×1 v)×1 v = λv

((S ×1 v)×1 v)j =

d∑
k,i=1

Skijvkvi

We want to decompose our tensor, i.e. we ultimately want a rank-1
decomposition such that

S =

r∑
i=1

vi ⊗ vi ⊗ vi
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Rank 1 Decomposition of Higher Moments

NPI for 3-Tensors

Tensor-Vector Product

repvec = size(S);
repvec(1) = 1;
Stimes1v = squeeze(sum(S.*repmat(v,repvec),1));

Symmetric Higher-Order Power Method (S-HOPM)
[Kofidis & Regalia, 2002]

v = ones(size(S,1),1);
for iter=1:1000

v = tensorXvector(S,v)*v;
v = v/norm(v);

end

lambda = v'*(tensorXvector(S,v)*v)/(v'*v);
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Rank 1 Decomposition of Higher Moments

Symmetric Higher-Order Power Method (S-HOPM)

Theorem
The eigenvector u of a tensor T such that

(((T ×1 u)×1 u) · · · ×1 u) = λu

with maximum |λ| gives the best rank-1 approximation of T meaning

‖T − λu⊗k‖

is minimized over all possible λ, ‖u‖ = 1. [Kofidis & Regalia, 2002]
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Rank 1 Decomposition of Higher Moments

“Peeling Process”

Now that we found the best rank 1 approximation, we now want the
best rank 1 decomposition.

After we’ve found the rank-1 approximation u⊗k1 , we subtract it from T
and then recursively find the rank-1 approximation of the result and
subtract it from T once again and repeat:

T1 = T − λ1u⊗k1

T2 = T − λ2u⊗k2

...

The result will be our rank-1 decomposition: T ≈
∑
i

λiu
⊗k
i
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Higher Order Unscented Ensemble

Higher Order Unscented Ensemble

Recall our goal was when we are given the first four moments of the
distribution of a random variable X ∈ Rn and we want to find the first
four moments of the distribution of a nonlinear function f : Rn → Rm.

We now have an effective algorithm for finding the rank-1
decomposition of tensors and thus have the ability to match multiple
moments together.
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Higher Order Unscented Ensemble

One issue we come across is once we find the rank-1 decompositions

of the higher moments, S =

J∑
i=1

ṽi
⊗3 and K =

L∑
i=1

siũi
⊗4, where the

numbers si denote the sign of the eigenvalues of K, then the moments
of the eigenvectors

µ̃ =

J∑
i=1

ṽi 6= µ

and

C̃ =

L∑
i=1

siũi
⊗2 6= C

So we can’t just tack on these decompositions to Julier’s Unscented
Ensemble. We have to create our own.
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Higher Order Unscented Ensemble

We have constructed our own set of σ-points and corresponding
weights associated with µ, C, S, and K such that

N∑
i=−1

wiσi = µ

N∑
i=−1

wi(σi − µ)⊗2 = C

N∑
i=−1

wi(σi − µ)⊗3 = S + 2ζα3µ̂⊗3

N∑
i=−1

wi(σi − µ)⊗4 = K + β2
d∑
i=1

√
Ĉ
⊗4
i .
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Higher Order Unscented Ensemble

Higher Order Unscented Ensemble

The 4 moment σ–points of the Higher Order Unscented Transform

Suppose we are given the first 4 moments: µ ∈ Rd, C ∈ Rd×d, S ∈ Rd×d×d,
and K ∈ Rd×d×d×d such that C is positive definite and S and K have the

rank-1 decompositions S =

J∑
i=1

ṽi
⊗3 and K =

L∑
i=1

siũi
⊗4 where the numbers

si denote the sign of the eigenvalues of K. Now let α, β, γ, δ, ζ, η, ν, ψ ∈ R and

denote µ̃ =

J∑
i=1

ṽi, C̃ =

L∑
i=1

siũi
⊗2, µ̂ =

(
1− 2dη − 2L̂ψ

)
µ− 2νγµ̃

2αζ
, where

L̂ =

L∑
i=1

si and Ĉ = C − 1

ρ2
C̃ with ρ >

√
λC̃max

λCmin

.
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Higher Order Unscented Ensemble

The 4 moment σ–points of the Higher Order Unscented Transform

Then we define the 4 moment σ-points by

σi =



µ+ αµ̂ if i = −1
µ− αµ̂ if i = 0

µ+ β
√
Ĉi if i = 1, . . . , d

µ− β
√
Ĉi−d if i = d+ 1, . . . , 2d

µ+ γṽi−2d if i = 2d+ 1, . . . , 2d+ J

µ− γṽi−2d−J if i = 2d+ J + 1, . . . , 2d+ 2J

µ+ δũi−2d−2J if i = 2d+ 2J + 1, . . . , 2d+ 2J + L

µ− δũi−2d−2J−L if i = 2d+ 2J + L+ 1, . . . , N

and the corresponding weights are

wi =



ζ if i = −1
−ζ if i = 0

η if i = 1, . . . , 2d

ν if i = 2d+ 1, . . . , 2d+ J

−ν if i = 2d+ J + 1, . . . , 2d+ 2J

ψsi−2d−2J if i = 2d+ 2J + 1, . . . , 2d+ 2J + L

ψsi−2d−2J−L if i = 2d+ 2J + L+ 1, . . . , N

For convenience, we denote N = 2(d+ J + L).
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Higher Order Unscented Ensemble

Theorem

Given the four moment σ-points associated with µ, C, S, and K, then for any

ρ >

√
λC̃
max

λC
min

as defined above and α, β, γ, ζ such that

η =
1

2β2
, ψ =

1

2ρ4
, ν =

1

2γ3
, and δ2 = ρ2,

we have

N∑
i=−1

wiσi = µ

N∑
i=−1

wi(σi − µ)⊗2 = C

N∑
i=−1

wi(σi − µ)⊗3 = S + 2ζα3µ̂⊗3

N∑
i=−1

wi(σi − µ)⊗4 = K + β2
d∑

i=1

√
Ĉ

⊗4

i .
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Higher Order Unscented Ensemble
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Higher Order Unscented Ensemble
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