Generalizing the Unscented Ensemble Transform to Higher Moments

Deanna Easley

George Mason University

November 22, 2019

Outline

(1) Introduction to the Unscented Transform
(2) Rank 1 Decomposition of Higher Moments
(3) Higher Order Unscented Ensemble

Outline

(1) Introduction to the Unscented Transform

(2) Rank 1 Decomposition of Higher Moments

(3) Higher Order Unscented Ensemble

Uncertainty Quantification (UQ)

Consider a random variable $X \in \mathbb{R}^{n}$ and a nonlinear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Fundamental question of UQ:

Given information about the distribution of X what can we say about the distribution of $f(X)$?

Uncertainty Quantification (UQ)

Example:

- $X \sim \mathcal{N}\left(1, \frac{1}{100}\right)$, with distribution $p(x)=\frac{\exp \left(-50(x-1)^{2}\right)}{\sqrt{\pi / 50}}$
- $f(x)=x^{10}$
- $\mathbb{E}[f(X)]=\int_{-\infty}^{\infty} f(x) p(x) d x=\int_{-\infty}^{\infty} x^{10} \frac{\exp \left(-50(x-1)^{2}\right)}{\sqrt{\pi / 50}} d x \approx 1.5$

Uncertainty Quantification (UQ)

Consider a random variable $X \in \mathbb{R}^{n}$ and a nonlinear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Fundamental question of UQ:

Given information about the distribution of X what can we say about the distribution of $f(X)$?

- When distribution of X is fully known
- When we only know moments of X (mean, variance, etc.)
- When we have a finite collection of samples of X

Monte Carlo Simulation

- Sample $\left\{X_{i}\right\}_{i=1}^{N}$ from $p(x)$
- Estimate $\mathbb{E}[f(X)]$ by the average $\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)$
- Problems: Need to know p and be able to sample it, need large N, f may be slow.

Unscented Transform

- Goal: Estimate $\mathbb{E}[f(X)]=\int f(x) p(x) d x$
- Idea: Generate quadrature points for the weighted integral
- Quadrature: $\mathbb{E}[f(X)] \approx \sum_{i=1}^{N} w_{i} f\left(x_{i}\right)$ where x_{i} are nodes and w_{i} are weights for $i=1, \ldots, N$
- Degree-of-exactness: the largest value of m so that all polynomials of degree m and below are integrated exactly.

Unscented Transform

- One point quadrature: $\sigma_{1}=\mu, w_{1}=1$

$$
\int f(x) p(x) d x \approx w_{1} f\left(\sigma_{1}\right)=f(\mu)
$$

- Exact for $f(x)=a x+b$ (degree-of-exactness $=1$)

$$
\int(a x+b) p(x) d x=a \int x p(x) d x+b \int p(x) d x=a \mu+b
$$

Unscented Transform

Julier's Idea: Suppose we choose the right nodes so that our quadrature has degree of exactness 2, i.e. matches the first two moments exactly.

The σ-points of the Unscented Transform

Suppose we are given the first two moments, the mean $\mu \in \mathbb{R}^{d}$ and the covariance $C \in \mathbb{R}^{d \times d}$. Then the σ-points are defined by

$$
\sigma_{i}= \begin{cases}\mu+{\sqrt{d C_{i}}}_{i} & \text { if } i=1, \ldots, d \\ \mu-{\sqrt{d C_{i-d}}} & \text { if } i=d+1, \ldots, 2 d\end{cases}
$$

Note: $\sum_{i=1}^{d} \sqrt{C}_{i} \sqrt{C}_{i}^{\top}=C$

Empirical mean

$$
\begin{aligned}
\mathbb{E}[X] & =\frac{1}{2 d} \sum_{i=1}^{2 d} \sigma_{i} \\
& =\frac{1}{2 d} \sum_{i=1}^{d}\left(\mu+\sqrt{d C_{i}}\right)+\frac{1}{2 d} \sum_{i=d+1}^{2 d}\left(\mu-\sqrt{d C_{i-d}}\right) \\
& =\frac{1}{2 d} \sum_{i=1}^{d}\left(\mu+\sqrt{d C_{i}}+\mu-{\sqrt{d C_{i}}}_{i}\right) \\
& =\frac{1}{2 d} \sum_{i=1}^{d} 2 \mu \\
& =\frac{1}{2 d}(2 d \mu) \\
& =\mu
\end{aligned}
$$

Empirical covariance

$$
\begin{aligned}
\mathbb{E}\left[(X-\mu)(X-\mu)^{\top}\right] & =\frac{1}{2 d} \sum_{i=1}^{2 d}\left(\sigma_{i}-\mu\right)\left(\sigma_{i}-\mu\right)^{\top} \\
& =\frac{1}{2 d}\left[\sum_{i=1}^{d}{\sqrt{d C_{i}}}{\sqrt{d C_{i}}}^{\top}+\sum_{i=d+1}^{2 d}{\sqrt{d C_{i-d}}}{\sqrt{d C_{i-d}}}^{\top}\right] \\
& =\frac{1}{2 d}[d C+d C] \\
& =\frac{1}{2 d}(2 d C \mu) \\
& =C
\end{aligned}
$$

Unscented Transform

If $p(x)$ is Gaussian, then the Unscented Transform is good at approximating $\mathbb{E}[f(X)]$. But what if it isn't?

What about the next two moments?
Skewness: measure of the asymmetry of the probability distribution of a real-valued random variable about its mean

Kurtosis: measure of the "tailedness" of the probability distribution of a real-valued random variable

Tensors

Tensors are basically multidimensional matrices.
Let $x \in \mathbb{R}^{d}$. Then $x x^{\top}$ is a d-by- d matrix. Thus the $i j$-entry of $x x^{\top}$ can be represented as follows

$$
\left(x x^{\top}\right)_{i j}=x_{i} x_{j}=(x \otimes x)_{i j}=\left(x^{\otimes 2}\right)_{i j}
$$

Thus we can represent the covariance as

$$
C=\mathbb{E}\left[(X-\mu)^{\otimes 2}\right]=\int(x-\mu)^{\otimes 2} p(x) d x
$$

More formally, the skewness is defined as

$$
S=\int(x-\mu)^{\otimes 3} p(x) d x
$$

where $(x-\mu)^{\otimes 3}=(x-\mu) \otimes(x-\mu) \otimes(x-\mu)$ is a 3-tensor so

$$
S_{i j k}=\int(x-\mu)_{i}(x-\mu)_{j}(x-\mu)_{k} p(x) d x
$$

The kurtosis is defined as

$$
K=\int(x-\mu)^{\otimes 4} p(x) d x
$$

where $(x-\mu)^{\otimes n}=\underbrace{(x-\mu) \otimes(x-\mu) \otimes \cdots \otimes(x-\mu)}_{n \text { times }}$

Outline

(1) Introduction to the Unscented Transform

(2) Rank 1 Decomposition of Higher Moments

(3) Higher Order Unscented Ensemble

Eigendecomposition

We are going to assume from now on that all moments are symmetric, namely

$$
M_{i_{1} \cdots i_{n}}=M_{\sigma\left(i_{1} \cdots i_{n}\right)}
$$

for any permutation σ.
Recall that a symmetric matrix $A \in \mathbb{R}^{d \times d}$ with d linearly independent eigenvectors u_{i} can be factored as

$$
A=U \Lambda U^{\top}
$$

where U is the square $d \times d$ matrix whose i th column is the eigenvector u_{i} of A , and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues λ_{i}.

$$
\begin{aligned}
A & =\sum \lambda_{i} u_{i} u_{i}^{\top} \\
& =\sum \lambda_{i} u_{i}^{\otimes 2}
\end{aligned}
$$

Eigendecomposition for Higher Order Tensors

Our goal is to do the same thing for higher order tensors and give them a formula of what that might look like, i.e.

$$
\begin{aligned}
S & =\sum_{i} x_{i}^{\otimes 3} \\
K & =\sum_{i} x_{i}^{\otimes 4}
\end{aligned}
$$

Finding the Eigendecomposition Numerically

Solving the characteristic polynomial is not an option for dimension $d \geq 5$ (no solution to general quintic).

Power Iteration:
Random initial condition: $\vec{x}=\sum_{i=1}^{d} c_{i} \vec{u}_{i}\left(\right.$ where $\left.c_{i}=\left\langle\vec{x}, \vec{u}_{i}\right\rangle\right)$
Multiply by $A: A \vec{x}=\sum_{i=1}^{d} c_{i} A \vec{u}_{i}=\sum_{i=1}^{d} c_{i} \lambda_{i} \vec{u}_{i}$
Repeat: $A^{k} \vec{x}=\sum_{i=1}^{d} c_{i} \lambda_{i}^{k} \vec{u}_{i}$
Largest eigenvalue wins.

Power iteration blows up to ∞, so normalize

Normalized Power Iteration (NPI)

```
x = rand (d, 1);
for k=1:10,
    x = A*x;
    x = x/norm(x);
end
```


Multiplying a 2 -Tensor with a 1 -Tensor

Recall that for a matrix $A \in \mathbb{R}^{d \times d}$ and $v \in \mathbb{R}^{d}$ matrix vector multiplication

$$
(A v)_{i}=\sum_{j=1}^{d} A_{i j} v_{j}
$$

So we define two natural products

$$
\begin{aligned}
\left(A \times_{1} v\right)_{i} & =\sum_{j=1}^{d} A_{j i} v_{j}=\left(A^{\top} v\right)_{i} \\
\left(A \times_{2} v\right)_{i} & =\sum_{j=1}^{d} A_{i j} v_{j}=(A v)_{i}
\end{aligned}
$$

Note that multiplying a tensor by a vector, the order decreases by 1 .

Multiplying a 3 -Tensor with a 1 -Tensor

Applying the same line of thinking with tensors, for a tensor $S \in \mathbb{R}^{d \times d \times d}$ and vector $v \in \mathbb{R}^{d}$, tensor vector multiplication goes as follows

$$
\begin{aligned}
\left(S \times_{1} v\right)_{i k} & =\sum_{j=1}^{d} S_{j i k} v_{j} \\
\left(S \times_{2} v\right)_{i k} & =\sum_{j=1}^{d} S_{i j k} v_{j} \\
\left(S \times_{3} v\right)_{i k} & =\sum_{j=1}^{d} S_{i k j} v_{j}
\end{aligned}
$$

each case resulting in a $d \times d$ matrix.

Multiplying a 3 -Tensor with a 1 -Tensor

Let $S \in \mathbb{R}^{3 \times 3 \times 3}$ and $v \in \mathbb{R}^{3}$ such that

$S \times{ }_{1} v=\left[\begin{array}{lll}S_{111} v_{1}+S_{211} v_{2}+S_{311} v_{3} & S_{112} v_{1}+S_{212} v_{2}+S_{312} v_{3} & S_{113} v_{1}+S_{213} v_{2}+S_{313} v_{3} \\ S_{121} v_{1}+S_{221} v_{2}+S_{321} v_{3} & S_{122} v_{1}+S_{222} v_{2}+S_{322} v_{3} & S_{123} v_{1}+S_{223} v_{2}+S_{323} v_{3} \\ S_{131} v_{1}+S_{231} v_{2}+S_{331} v_{3} & S_{132} v_{1}+S_{232} v_{2}+S_{332} v_{3} & S_{133} v_{1}+S_{233} v_{2}+S_{333} v_{3}\end{array}\right]$

Eigenvectors of a 3-Tensor

$$
\begin{gathered}
\left(S \times_{1} v\right) \times_{1} v=\lambda v \\
\left(\left(S \times_{1} v\right) \times_{1} v\right)_{j}=\sum_{k, i=1}^{d} S_{k i j} v_{k} v_{i}
\end{gathered}
$$

We want to decompose our tensor, i.e. we ultimately want a rank-1 decomposition such that

$$
S=\sum_{i=1}^{r} v_{i} \otimes v_{i} \otimes v_{i}
$$

NPI for 3-Tensors

Tensor-Vector Product

```
repvec = size(S);
repvec(1) = 1;
Stimeslv = squeeze(sum(S.*repmat(v,repvec),1));
```


Symmetric Higher-Order Power Method (S-HOPM)

[Kofidis \& Regalia, 2002]

```
v = ones(size(S,1),1);
for iter=1:1000
    v = tensorXvector (S,v)*v;
    v = v/norm(v);
end
lambda = v'*(tensorXvector (S,v)*v)/(v'*v);
```


Symmetric Higher-Order Power Method (S-HOPM)

Theorem

The eigenvector u of a tensor T such that

$$
\left(\left(\left(T \times_{1} u\right) \times_{1} u\right) \cdots \times_{1} u\right)=\lambda u
$$

with maximum $|\lambda|$ gives the best rank-1 approximation of T meaning

$$
\left\|T-\lambda u^{\otimes k}\right\|
$$

is minimized over all possible $\lambda,\|u\|=1$. [Kofidis \& Regalia, 2002]

"Peeling Process"

Now that we found the best rank 1 approximation, we now want the best rank 1 decomposition.

After we've found the rank-1 approximation $u_{1}^{\otimes k}$, we subtract it from T and then recursively find the rank-1 approximation of the result and subtract it from T once again and repeat:

$$
\begin{aligned}
& T_{1}=T-\lambda_{1} u_{1}^{\otimes k} \\
& T_{2}=T-\lambda_{2} u_{2}^{\otimes k}
\end{aligned}
$$

The result will be our rank-1 decomposition: $T \approx \sum_{i} \lambda_{i} u_{i}^{\otimes k}$

Outline

(1) Introduction to the Unscented Transform

(2) Rank 1 Decomposition of Higher Moments

(3) Higher Order Unscented Ensemble

Higher Order Unscented Ensemble

Recall our goal was when we are given the first four moments of the distribution of a random variable $X \in \mathbb{R}^{n}$ and we want to find the first four moments of the distribution of a nonlinear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

We now have an effective algorithm for finding the rank-1 decomposition of tensors and thus have the ability to match multiple moments together.

One issue we come across is once we find the rank-1 decompositions of the higher moments, $S=\sum_{i=1}^{J} \tilde{v}_{i}^{\otimes 3}$ and $K=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}^{\otimes 4}$, where the numbers s_{i} denote the sign of the eigenvalues of K, then the moments of the eigenvectors

$$
\tilde{\mu}=\sum_{i=1}^{J} \tilde{v}_{i} \neq \mu
$$

and

$$
\tilde{C}=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}^{\otimes 2} \neq C
$$

So we can't just tack on these decompositions to Julier's Unscented Ensemble. We have to create our own.

We have constructed our own set of σ-points and corresponding weights associated with μ, C, S, and K such that

$$
\begin{aligned}
\sum_{i=-1}^{N} w_{i} \sigma_{i} & =\mu \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 2} & =C \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 3} & =S+2 \zeta \alpha^{3} \hat{\mu}^{\otimes 3} \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 4} & =K+\beta^{2} \sum_{i=1}^{d} \sqrt{\hat{C}_{i}}
\end{aligned}
$$

Higher Order Unscented Ensemble

The 4 moment σ-points of the Higher Order Unscented Transform

Suppose we are given the first 4 moments: $\mu \in \mathbb{R}^{d}, C \in \mathbb{R}^{d \times d}, S \in \mathbb{R}^{d \times d \times d}$, and $K \in \mathbb{R}^{d \times d \times d \times d}$ such that C is positive definite and S and K have the rank-1 decompositions $S=\sum_{i=1}^{J} \tilde{v}_{i}{ }^{\otimes 3}$ and $K=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}{ }^{\otimes 4}$ where the numbers s_{i} denote the sign of the eigenvalues of K. Now let $\alpha, \beta, \gamma, \delta, \zeta, \eta, \nu, \psi \in \mathbb{R}$ and denote $\tilde{\mu}=\sum_{i=1}^{J} \tilde{v}_{i}, \tilde{C}=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}^{\otimes 2}, \hat{\mu}=\frac{(1-2 d \eta-2 \hat{L} \psi) \mu-2 \nu \gamma \tilde{\mu}}{2 \alpha \zeta}$, where $\hat{L}=\sum_{i=1}^{L} s_{i}$ and $\hat{C}=C-\frac{1}{\rho^{2}} \tilde{C}$ with $\rho>\sqrt{\frac{\lambda_{\max }^{\tilde{C}}}{\lambda_{\min }^{C}}}$.

The 4 moment σ-points of the Higher Order Unscented Transform

Then we define the 4 moment σ-points by

$$
\sigma_{i}= \begin{cases}\mu+\alpha \hat{\mu} & \text { if } i=-1 \\ \mu-\alpha \hat{\mu} & \text { if } i=0 \\ \mu+\beta \sqrt{\hat{C}}_{i} & \text { if } i=1, \ldots, d \\ \mu-\beta \sqrt{\hat{C}}_{i-d} & \text { if } i=d+1, \ldots, 2 d \\ \mu+\gamma \tilde{v}_{i-2 d} & \text { if } i=2 d+1, \ldots, 2 d+J \\ \mu-\gamma \tilde{v}_{i-2 d-J} & \text { if } i=2 d+J+1, \ldots, 2 d+2 J \\ \mu+\delta \tilde{u}_{i-2 d-2 J} & \text { if } i=2 d+2 J+1, \ldots, 2 d+2 J+L \\ \mu-\delta \tilde{u}_{i-2 d-2 J-L} & \text { if } i=2 d+2 J+L+1, \ldots, N\end{cases}
$$

and the corresponding weights are

$$
w_{i}= \begin{cases}\zeta & \text { if } i=-1 \\ -\zeta & \text { if } i=0 \\ \eta & \text { if } i=1, \ldots, 2 d \\ \nu & \text { if } i=2 d+1, \ldots, 2 d+J \\ -\nu & \text { if } i=2 d+J+1, \ldots, 2 d+2 J \\ \psi s_{i-2 d-2 J} & \text { if } i=2 d+2 J+1, \ldots, 2 d+2 J+L \\ \psi s_{i-2 d-2 J-L} & \text { if } i=2 d+2 J+L+1, \ldots, N\end{cases}
$$

For convenience, we denote $N=2(d+J+L)$.

Theorem

Given the four moment σ-points associated with μ, C, S, and K, then for any $\rho>\sqrt{\frac{\lambda_{\max }^{\tilde{C}}}{\lambda_{\text {min }}^{C}}}$ as defined above and $\alpha, \beta, \gamma, \zeta$ such that

$$
\eta=\frac{1}{2 \beta^{2}}, \quad \psi=\frac{1}{2 \rho^{4}}, \quad \nu=\frac{1}{2 \gamma^{3}}, \quad \text { and } \quad \delta^{2}=\rho^{2},
$$

we have

$$
\begin{aligned}
\sum_{i=-1}^{N} w_{i} \sigma_{i} & =\mu \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 2} & =C \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 3} & =S+2 \zeta \alpha^{3} \hat{\mu}^{\otimes 3} \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 4} & =K+\beta^{2} \sum_{i=1}^{d} \sqrt{\hat{C}_{i}} .
\end{aligned}
$$

Bibliography

嗇 S. Julier and J. K. Uhmann,
A general method for approximating nonlinear transformations of probability distributions.
Research Gate, 1999.
E. Kofidis and P. Regalia.

On the Best Rank-1 Approximation of Higher-Order
Supersymmetric Tensors.
SIAM J. MATRIX ANAL. APPL., Vol. 23, No. 3, pp. 863-884. 2002.

