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Introduction to the Unscented Transform

Motivation
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Introduction to the Unscented Transform

Uncertainty Quantification (UQ)

Consider a random variable X ∈ Rn and a nonlinear function
f : Rn → Rm.

Fundamental question of UQ:
Given information about the distribution of X what can we say about
the distribution of f(X)?
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Introduction to the Unscented Transform

Unscented Transform

Goal: Estimate E[f(X)] =

∫
f(x)p(x) dx

Idea: Generate quadrature points for the weighted integral

Quadrature: E[f(X)] ≈
N∑
i=1

wif(xi) where xi are nodes and wi are

weights for i = 1, ..., N

Degree-of-exactness: the largest value of m so that all
polynomials of degree m and below are integrated exactly.
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Introduction to the Unscented Transform

Unscented Transform

Julier’s Idea: Suppose we choose the right nodes so that our
quadrature has degree of exactness 2, i.e. matches the first two
moments exactly.

The σ–points of the Unscented Transform

Suppose we are given the first two moments, the mean µ ∈ Rd and the
covariance C ∈ Rd×d. Then the σ–points are defined by

σi =

{
µ+
√
dCi if i = 1, . . . , d

µ−
√
dCi−d if i = d+ 1, . . . , 2d

Note:
d∑

i=1

√
Ci

√
C
>
i = C
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Introduction to the Unscented Transform

Empirical mean and Empirical covariance [Julier & Uhmann, 1999]
We have that

µ = E[X] =
1

2d

2d∑
i=1

σi

C = E[(X − µ)(X − µ)>] =
1

2d

2d∑
i=1

(σi − µ)(σi − µ)>

and if q : Rd → R is a polynomial of degree at most 2, we have,

E[q(X)] =
2d∑
i=1

wiq(σi)

where wi are the corresponding weights of σi and wi =
1

2d
for the

Unscented Transform.
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Introduction to the Unscented Transform

Tensors

Tensors are basically multidimensional matrices.

T111 T121 T131

T211 T221 T231

T311 T321 T331




T112 T122 T132

T212 T222 T232

T312 T322 T332




T113 T123 T133

T213 T223 T233

T313 T323 T333




k-order tensor

For positive integers d and k, a tensor T belonging to Rd
k

is called a
k-order tensor or simply a k-tensor.
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Introduction to the Unscented Transform

Tensors
We can represent the covariance as

C = E[(X − µ)⊗2] =

∫
(x− µ)⊗2p(x) dx

and the skewness is defined as

S = E[(X − µ)⊗3] =

∫
(x− µ)⊗3p(x) dx

where
Sijk =

∫
(x− µ)i(x− µ)j(x− µ)kp(x) dx.

The kurtosis is defined as

K = E[(X − µ)⊗4] =

∫
(x− µ)⊗4p(x) dx

where (x− µ)⊗k = (x− µ)⊗ (x− µ)⊗ · · · ⊗ (x− µ)︸ ︷︷ ︸
k times

is a k-tensor.
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Rank 1 Decomposition of Higher Moments

Eigendecomposition is Rank-1 Decomposition

Recall that a symmetric matrix A ∈ Rd×d with d linearly independent
eigenvectors ui can be factored as

A = UΛU>

where U is the square d× d matrix whose ith column is the
eigenvector ui of A, and Λ is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues λi.

A =
∑

λiuiu
>
i

=
∑

λiu
⊗2
i
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Rank 1 Decomposition of Higher Moments

Rank-1 Decomposition for Higher Order Tensors

Our goal is to do the same thing for higher order tensors and give them
a formula of what that might look like, i.e.

S =
∑
i

x⊗3i

K =
∑
i

x⊗4i
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Rank 1 Decomposition of Higher Moments

Multiplying a 2-Tensor with a 1-Tensor

Recall that for a matrix A ∈ Rd×d and v ∈ Rd matrix vector
multiplication

(Av)i =

d∑
j=1

Aijvj

So we define two natural products

(A×1 v)i =

d∑
j=1

Ajivj = (A>v)i

(A×2 v)i =

d∑
j=1

Aijvj = (Av)i

Note that multiplying a tensor by a vector, the order decreases by 1.
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Rank 1 Decomposition of Higher Moments

Multiplying a 3-Tensor with a 1-Tensor

Applying the same line of thinking with tensors, for a tensor S ∈ Rd×d×d
and vector v ∈ Rd, tensor vector multiplication goes as follows

(S ×1 v)ik =

d∑
j=1

Sjikvj

(S ×2 v)ik =

d∑
j=1

Sijkvj

(S ×3 v)ik =

d∑
j=1

Sikjvj

each case resulting in a d× d matrix.
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Rank 1 Decomposition of Higher Moments

Multiplying a 3-Tensor with a 1-Tensor

Let S ∈ R3×3×3 and v ∈ R3 such that

S =

S111 S121 S131

S211 S221 S231

S311 S321 S331




S112 S122 S132

S212 S222 S232

S312 S322 S332




S113 S123 S133

S213 S223 S233

S313 S323 S333




S×1v =

S111v1 + S211v2 + S311v3 S112v1 + S212v2 + S312v3 S113v1 + S213v2 + S313v3
S121v1 + S221v2 + S321v3 S122v1 + S222v2 + S322v3 S123v1 + S223v2 + S323v3
S131v1 + S231v2 + S331v3 S132v1 + S232v2 + S332v3 S133v1 + S233v2 + S333v3



Deanna Easley (GMU) August 14, 2020 17 / 31



Rank 1 Decomposition of Higher Moments

Eigenvectors of a 3-Tensor

Notice that all moments are symmetric, namely

Mi1···in = Mσ(i1···in)

for any permutation σ.

(S ×1 v)×1 v = λv

((S ×1 v)×1 v)j =

d∑
k,i=1

Skijvkvi

We want to decompose our tensor, i.e. we ultimately want a rank-1
decomposition such that

S =

r∑
i=1

vi ⊗ vi ⊗ vi
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Rank 1 Decomposition of Higher Moments

Tensor Eigenvectors

Theorem

The eigenvector v of a k-order tensor T with size d, i.e. T ∈ Rd
k

such
that

(((T ×1 v)×1 v) · · · ×1 v)︸ ︷︷ ︸
k−1 times

= λv

with maximum |λ| gives the best rank-1approximation of T meaning

‖T − λv⊗k‖

is minimized over all possible λ, ‖v‖ = 1. [Kofidis & Regalia, 2002]

Numerical methods such as HOPM and S-HOPM are available for
finding tensor eigenvectors.
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Rank 1 Decomposition of Higher Moments

“Peeling Process”
Now that we found the best rank-1 approximation, we now want a rank-1
decomposition.

Theorem
Consider the process of finding an approximate rank-1 decomposition of T by starting
from T0 = T and setting

T`+1 = T` − λ`v⊗k`
where λ` is the largest eigenvalue in absolute value of T` and v` is the associated
eigenvector. Assume also that there exists a universal constant c ∈ (0, 1] such that

λ` ≥ c|(T`)i1...ik |. Then ‖T`‖F → 0 and for r =

√
1− c2

dk
∈ (0, 1)

‖T`+1‖F
‖T`‖F

≤ r

T =

L∑
`=1

λ`v
⊗k
` +O(rL)

for all L ∈ N.
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Higher Order Unscented Transform
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Higher Order Unscented Transform

Higher Order Unscented Ensemble

One issue we come across is once we find the rank-1 decompositions

of the higher moments, S =

J∑
i=1

ṽi
⊗3 and K =

L∑
i=1

siũi
⊗4, where the

numbers si denote the sign of the eigenvalues of K, then the moments
of the eigenvectors

µ̃ =

J∑
i=1

ṽi 6= µ

and

C̃ =

L∑
i=1

siũi
⊗2 6= C

So we can’t just tack on these decompositions to Julier’s Unscented
Ensemble. We have to create our own.
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Higher Order Unscented Transform

We have constructed our own set of σ-points and corresponding
weights associated with µ, C, S, and K such that

N∑
i=−2

wiσi = µ

N∑
i=−2

wi(σi − µ)⊗2 = C

N∑
i=−2

wi(σi − µ)⊗3 ≈ S

N∑
i=−2

wi(σi − µ)⊗4 ≈ K
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Higher Order Unscented Transform

Higher Order Unscented Ensemble

The 4 moment σ–points of the Higher Order Unscented Transform

Suppose we are given the first 4 moments: µ ∈ Rd, C ∈ Rd×d, S ∈ Rd×d×d,
and K ∈ Rd×d×d×d such that C is positive definite and S and K have the

rank-1 decompositions S =

J∑
i=1

ṽi
⊗3 and K =

L∑
i=1

siũi
⊗4 where the numbers

si denote the sign of the eigenvalues of K. Now let α, β, γ, δ ∈ R and denote

µ̃ =

J∑
i=1

ṽi, C̃ =

L∑
i=1

siũi
⊗2, µ̂ =

(
1− dβ−2 − L̂δ−4

)
µ− γ−2µ̃, where L̂ =

L∑
i=1

si

and Ĉ = C − 1

δ2
C̃ with δ >

√
λC̃max

λCmin

.
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Higher Order Unscented Transform

The 4 moment σ–points of the Higher Order Unscented Transform

Then we define the 4 moment σ-points by

σi =



µ if i = −2

µ + αµ̂ if i = −1

µ− αµ̂ if i = 0

µ + β
√
Ĉi if i = 1, . . . , d

µ− β
√
Ĉi−d if i = d + 1, . . . , 2d

µ + γṽi−2d if i = 2d + 1, . . . , 2d + J

µ− γṽi−2d−J if i = 2d + J + 1, . . . , 2d + 2J

µ + δũi−2d−2J if i = 2d + 2J + 1, . . . , 2d + 2J + L

µ− δũi−2d−2J−L if i = 2d + 2J + L + 1, . . . , N

and the corresponding weights are

wi =



1 − dβ
−2 − L̂δ

−4 if i = −2
1

2α
if i = −1

−
1

2α
if i = 0

1

2β2
if i = 1, . . . , 2d

1

2γ3
if i = 2d + 1, . . . , 2d + J

−
1

2γ3
if i = 2d + J + 1, . . . , 2d + 2J

1

2δ4
si−2d−2J if i = 2d + 2J + 1, . . . , 2d + 2J + L

1

2δ4
si−2d−2J−L if i = 2d + 2J + L + 1, . . . , N

For convenience, we denote N = 2(d + J + L).
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Higher Order Unscented Transform

Theorem

Given the four moment σ-points associated with µ, C, S, and K, then for any

δ >

√
λC̃max

λCmin

as defined above and α, β, γ we have

N∑
i=−1

wiσi = µ

N∑
i=−1

wi(σi − µ)⊗2 = C

N∑
i=−1

wi(σi − µ)⊗3 = S + α2µ̂⊗3

N∑
i=−1

wi(σi − µ)⊗4 = K + β2
d∑
i=1

√
Ĉ

⊗4

i .
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Higher Order Unscented Transform
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Higher Order Unscented Transform

Comparing our transform to the Unscented Transform
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f(x) = ax+ bcx2 f(x) = ax+ bcx3 f(x) = ax+ bcx4 f(x) = ax+ bcx5
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Higher Order Unscented Transform
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Higher Order Unscented Transform
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Higher Order Unscented Transform
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