Generalizing the Unscented Ensemble Transform to Higher Moments

Deanna Easley

George Mason University

August 14, 2020

Outline

(1) Introduction to the Unscented Transform
(2) Rank 1 Decomposition of Higher Moments
(3) Higher Order Unscented Transform

Outline

(1) Introduction to the Unscented Transform

(2) Rank 1 Decomposition of Higher Moments

3 Higher Order Unscented Transform

Motivation

Motivation

Uncertainty Quantification (UQ)

Consider a random variable $X \in \mathbb{R}^{n}$ and a nonlinear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Fundamental question of UQ:

Given information about the distribution of X what can we say about the distribution of $f(X)$?

Unscented Transform

- Goal: Estimate $\mathbb{E}[f(X)]=\int f(x) p(x) d x$
- Idea: Generate quadrature points for the weighted integral
- Quadrature: $\mathbb{E}[f(X)] \approx \sum_{i=1}^{N} w_{i} f\left(x_{i}\right)$ where x_{i} are nodes and w_{i} are weights for $i=1, \ldots, N$
- Degree-of-exactness: the largest value of m so that all polynomials of degree m and below are integrated exactly.

Unscented Transform

Julier's Idea: Suppose we choose the right nodes so that our quadrature has degree of exactness 2, i.e. matches the first two moments exactly.

The σ-points of the Unscented Transform

Suppose we are given the first two moments, the mean $\mu \in \mathbb{R}^{d}$ and the covariance $C \in \mathbb{R}^{d \times d}$. Then the σ-points are defined by

$$
\sigma_{i}= \begin{cases}\mu+{\sqrt{d C_{i}}}_{i} & \text { if } i=1, \ldots, d \\ \mu-{\sqrt{d C_{i-d}}} & \text { if } i=d+1, \ldots, 2 d\end{cases}
$$

Note: $\sum_{i=1}^{d} \sqrt{C}_{i} \sqrt{C}_{i}^{\top}=C$

Empirical mean and Empirical covariance [Julier \& Uhmann, 1999]

We have that

$$
\begin{gathered}
\mu=\mathbb{E}[X]=\frac{1}{2 d} \sum_{i=1}^{2 d} \sigma_{i} \\
C=\mathbb{E}\left[(X-\mu)(X-\mu)^{\top}\right]=\frac{1}{2 d} \sum_{i=1}^{2 d}\left(\sigma_{i}-\mu\right)\left(\sigma_{i}-\mu\right)^{\top}
\end{gathered}
$$

and if $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a polynomial of degree at most 2 , we have,

$$
\mathbb{E}[q(X)]=\sum_{i=1}^{2 d} w_{i} q\left(\sigma_{i}\right)
$$

where w_{i} are the corresponding weights of σ_{i} and $w_{i}=\frac{1}{2 d}$ for the Unscented Transform.

Tensors

Tensors are basically multidimensional matrices.

k-order tensor

For positive integers d and k, a tensor T belonging to $\mathbb{R}^{d^{k}}$ is called a k-order tensor or simply a k-tensor.

Tensors

We can represent the covariance as

$$
C=\mathbb{E}\left[(X-\mu)^{\otimes 2}\right]=\int(x-\mu)^{\otimes 2} p(x) d x
$$

and the skewness is defined as

$$
S=\mathbb{E}\left[(X-\mu)^{\otimes 3}\right]=\int(x-\mu)^{\otimes 3} p(x) d x
$$

where

$$
S_{i j k}=\int(x-\mu)_{i}(x-\mu)_{j}(x-\mu)_{k} p(x) d x .
$$

The kurtosis is defined as

$$
K=\mathbb{E}\left[(X-\mu)^{\otimes 4}\right]=\int(x-\mu)^{\otimes 4} p(x) d x
$$

where $(x-\mu)^{\otimes k}=\underbrace{(x-\mu) \otimes(x-\mu) \otimes \cdots \otimes(x-\mu)}_{k \text { times }}$ is a k-tensor.

Outline

(1) Introduction to the Unscented Transform

(2) Rank 1 Decomposition of Higher Moments

(3) Higher Order Unscented Transform

Eigendecomposition is Rank-1 Decomposition

Recall that a symmetric matrix $A \in \mathbb{R}^{d \times d}$ with d linearly independent eigenvectors u_{i} can be factored as

$$
A=U \Lambda U^{\top}
$$

where U is the square $d \times d$ matrix whose i th column is the eigenvector u_{i} of A , and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues λ_{i}.

$$
\begin{aligned}
A & =\sum \lambda_{i} u_{i} u_{i}^{\top} \\
& =\sum \lambda_{i} u_{i}^{\otimes 2}
\end{aligned}
$$

Rank-1 Decomposition for Higher Order Tensors

Our goal is to do the same thing for higher order tensors and give them a formula of what that might look like, i.e.

$$
\begin{aligned}
S & =\sum_{i} x_{i}^{\otimes 3} \\
K & =\sum_{i} x_{i}^{\otimes 4}
\end{aligned}
$$

Multiplying a 2 -Tensor with a 1 -Tensor

Recall that for a matrix $A \in \mathbb{R}^{d \times d}$ and $v \in \mathbb{R}^{d}$ matrix vector multiplication

$$
(A v)_{i}=\sum_{j=1}^{d} A_{i j} v_{j}
$$

So we define two natural products

$$
\begin{aligned}
\left(A \times_{1} v\right)_{i} & =\sum_{j=1}^{d} A_{j i} v_{j}=\left(A^{\top} v\right)_{i} \\
\left(A \times_{2} v\right)_{i} & =\sum_{j=1}^{d} A_{i j} v_{j}=(A v)_{i}
\end{aligned}
$$

Note that multiplying a tensor by a vector, the order decreases by 1 .

Multiplying a 3 -Tensor with a 1 -Tensor

Applying the same line of thinking with tensors, for a tensor $S \in \mathbb{R}^{d \times d \times d}$ and vector $v \in \mathbb{R}^{d}$, tensor vector multiplication goes as follows

$$
\begin{aligned}
\left(S \times_{1} v\right)_{i k} & =\sum_{j=1}^{d} S_{j i k} v_{j} \\
\left(S \times_{2} v\right)_{i k} & =\sum_{j=1}^{d} S_{i j k} v_{j} \\
\left(S \times_{3} v\right)_{i k} & =\sum_{j=1}^{d} S_{i k j} v_{j}
\end{aligned}
$$

each case resulting in a $d \times d$ matrix.

Multiplying a 3 -Tensor with a 1 -Tensor

Let $S \in \mathbb{R}^{3 \times 3 \times 3}$ and $v \in \mathbb{R}^{3}$ such that

$S \times{ }_{1} v=\left[\begin{array}{lll}S_{111} v_{1}+S_{211} v_{2}+S_{311} v_{3} & S_{112} v_{1}+S_{212} v_{2}+S_{312} v_{3} & S_{113} v_{1}+S_{213} v_{2}+S_{313} v_{3} \\ S_{121} v_{1}+S_{221} v_{2}+S_{321} v_{3} & S_{122} v_{1}+S_{222} v_{2}+S_{322} v_{3} & S_{123} v_{1}+S_{223} v_{2}+S_{323} v_{3} \\ S_{131} v_{1}+S_{231} v_{2}+S_{331} v_{3} & S_{132} v_{1}+S_{232} v_{2}+S_{332} v_{3} & S_{133} v_{1}+S_{233} v_{2}+S_{333} v_{3}\end{array}\right]$

Eigenvectors of a 3-Tensor

Notice that all moments are symmetric, namely

$$
M_{i_{1} \cdots i_{n}}=M_{\sigma\left(i_{1} \cdots i_{n}\right)}
$$

for any permutation σ.

$$
\begin{gathered}
\left(S \times_{1} v\right) \times_{1} v=\lambda v \\
\left(\left(S \times_{1} v\right) \times_{1} v\right)_{j}=\sum_{k, i=1}^{d} S_{k i j} v_{k} v_{i}
\end{gathered}
$$

We want to decompose our tensor, i.e. we ultimately want a rank-1 decomposition such that

$$
S=\sum_{i=1}^{r} v_{i} \otimes v_{i} \otimes v_{i}
$$

Tensor Eigenvectors

Theorem

The eigenvector v of a k-order tensor T with size d, i.e. $T \in \mathbb{R}^{d^{k}}$ such that

$$
\underbrace{\left(\left(\left(T \times_{1} v\right) \times_{1} v\right) \cdots \times_{1} v\right)}_{k-1 \text { times }}=\lambda v
$$

with maximum $|\lambda|$ gives the best rank-1 approximation of T meaning

$$
\left\|T-\lambda v^{\otimes k}\right\|
$$

is minimized over all possible $\lambda,\|v\|=1$. [Kofidis \& Regalia, 2002]

Numerical methods such as HOPM and S-HOPM are available for finding tensor eigenvectors.

"Peeling Process"

Now that we found the best rank-1 approximation, we now want a rank-1 decomposition.

Theorem

Consider the process of finding an approximate rank-1 decomposition of T by starting from $T_{0}=T$ and setting

$$
T_{\ell+1}=T_{\ell}-\lambda_{\ell} v_{\ell}^{\otimes k}
$$

where λ_{ℓ} is the largest eigenvalue in absolute value of T_{ℓ} and v_{ℓ} is the associated eigenvector. Assume also that there exists a universal constant $c \in(0,1]$ such that $\lambda_{\ell} \geq c\left|\left(T_{\ell}\right)_{i_{1} \ldots i_{k}}\right|$. Then $\left\|T_{\ell}\right\|_{F} \rightarrow 0$ and for $r=\sqrt{1-\frac{c^{2}}{d^{k}}} \in(0,1)$

$$
\frac{\left\|T_{\ell+1}\right\|_{F}}{\left\|T_{\ell}\right\|_{F}} \leq r
$$

$$
T=\sum_{\ell=1}^{L} \lambda_{\ell} v_{\ell}^{\otimes k}+\mathcal{O}\left(r^{L}\right)
$$

for all $L \in \mathbb{N}$.

Outline

(1) Introduction to the Unscented Transform

(2) Rank 1 Decomposition of Higher Moments

(3) Higher Order Unscented Transform

Higher Order Unscented Ensemble

One issue we come across is once we find the rank-1 decompositions of the higher moments, $S=\sum_{i=1}^{J} \tilde{v}_{i}^{\otimes 3}$ and $K=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}{ }^{\otimes 4}$, where the numbers s_{i} denote the sign of the eigenvalues of K, then the moments of the eigenvectors

$$
\tilde{\mu}=\sum_{i=1}^{J} \tilde{v}_{i} \neq \mu
$$

and

$$
\tilde{C}=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}^{\otimes 2} \neq C
$$

So we can't just tack on these decompositions to Julier's Unscented Ensemble. We have to create our own.

We have constructed our own set of σ-points and corresponding weights associated with μ, C, S, and K such that

$$
\sum_{i=-2}^{N} w_{i} \sigma_{i}=\mu
$$

$$
\begin{aligned}
& \sum_{i=-2}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 2}=C \\
& \sum_{i=-2}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 3} \approx S \\
& \sum_{i=-2}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 4} \approx K
\end{aligned}
$$

Higher Order Unscented Ensemble

The 4 moment σ-points of the Higher Order Unscented Transform

Suppose we are given the first 4 moments: $\mu \in \mathbb{R}^{d}, C \in \mathbb{R}^{d \times d}, S \in \mathbb{R}^{d \times d \times d}$, and $K \in \mathbb{R}^{d \times d \times d \times d}$ such that C is positive definite and S and K have the rank-1 decompositions $S=\sum_{i=1}^{J} \tilde{v}_{i}^{\otimes 3}$ and $K=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}{ }^{\otimes 4}$ where the numbers s_{i} denote the sign of the eigenvalues of K. Now let $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and denote $\tilde{\mu}=\sum_{i=1}^{J} \tilde{v}_{i}, \tilde{C}=\sum_{i=1}^{L} s_{i} \tilde{u}_{i}^{\otimes 2}, \hat{\mu}=\left(1-d \beta^{-2}-\hat{L} \delta^{-4}\right) \mu-\gamma^{-2} \tilde{\mu}$, where $\hat{L}=\sum_{i=1}^{L} s_{i}$ and $\hat{C}=C-\frac{1}{\delta^{2}} \tilde{C}$ with $\delta>\sqrt{\frac{\lambda_{\max }^{\tilde{C}}}{\lambda_{\min }^{C}}}$.

The 4 moment σ-points of the Higher Order Unscented Transform

Then we define the 4 moment σ-points by

$$
\sigma_{i}= \begin{cases}\mu & \text { if } i=-2 \\ \mu+\alpha \hat{\mu} & \text { if } i=-1 \\ \mu-\alpha \hat{\mu} & \text { if } i=0 \\ \mu+\beta \sqrt{\hat{C}} & \text { if } i=1, \ldots, d \\ \mu-\beta \sqrt{\hat{C}}_{i-d} & \text { if } i=d+1, \ldots, 2 d \\ \mu+\gamma \tilde{v}_{i-2 d} & \text { if } i=2 d+1, \ldots, 2 d+J \\ \mu-\gamma \tilde{v}_{i-2 d-J} & \text { if } i=2 d+J+1, \ldots, 2 d+2 J \\ \mu+\delta \tilde{u}_{i-2 d-2 J} & \text { if } i=2 d+2 J+1, \ldots, 2 d+2 J+L \\ \mu-\delta \tilde{u}_{i-2 d-2 J-L} & \text { if } i=2 d+2 J+L+1, \ldots, N\end{cases}
$$

and the corresponding weights are

$$
w_{i}= \begin{cases}1-d \beta^{-2}-\hat{L} \delta^{-4} & \text { if } i=-2 \\ \frac{1}{2 \alpha}{ }_{1} & \text { if } i=-1 \\ -\frac{1}{2 \alpha} & \text { if } i=0 \\ \frac{1}{2 \beta^{2}} & \text { if } i=1, \ldots, 2 d \\ \frac{1}{2 \gamma^{3}} & \text { if } i=2 d+1, \ldots, 2 d+J \\ -\frac{1}{2 \gamma^{3}} & \text { if } i=2 d+J+1, \ldots, 2 d+2 J \\ \frac{1}{2 \delta^{4}} s_{i-2 d-2 J} & \text { if } i=2 d+2 J+1, \ldots, 2 d+2 J+L \\ \frac{1}{2 \delta^{4}} s_{i-2 d-2 J-L} & \text { if } i=2 d+2 J+L+1, \ldots, N\end{cases}
$$

For convenience, we denote $N=2(d+J+L)$.

Theorem

Given the four moment σ-points associated with μ, C, S, and K, then for any $\delta>\sqrt{\frac{\lambda_{\max }^{\tilde{C}}}{\lambda_{\min }^{C}}}$ as defined above and α, β, γ we have

$$
\begin{aligned}
\sum_{i=-1}^{N} w_{i} \sigma_{i} & =\mu \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 2} & =C \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 3} & =S+\alpha^{2} \hat{\mu}^{\otimes 3} \\
\sum_{i=-1}^{N} w_{i}\left(\sigma_{i}-\mu\right)^{\otimes 4} & =K+\beta^{2} \sum_{i=1}^{d} \sqrt{\hat{C}_{i}} .
\end{aligned}
$$

Comparing our transform to the Unscented Transform

$$
f(x)=a x+b c x^{2}
$$

$$
f(x)=a x+b c x^{3}
$$

$$
f(x)=a x+b c x^{4}
$$

$$
f(x)=a x+b c x^{5}
$$

Bibliography

D. Easley and T. Berry.

A Higher Order Unscented Transform.
Preprint on arXiv.org. https://arxiv.org/abs/2006.13429
嗇 S. Julier and J. K. Uhmann,
A general method for approximating nonlinear transformations of probability distributions.
Research Gate, 1999.
围 E. Kofidis and P. Regalia.
On the Best Rank-1 Approximation of Higher-Order
Supersymmetric Tensors.
SIAM J. MATRIX ANAL. APPL., Vol. 23, No. 3, pp. 863-884. 2002.

