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My research interests broadly live in the intersection of data driven analysis and applied dynamical systems.
In particular, I am focused on inverse problems (especially Kalman filtering) and uncertainty quantification.
Inverse problems can be roughly described as follows: given a set of observed noisy data, find the set of unknown
variables, or hidden state, that generated them. When the hidden state comes from a dynamical system, we also
have a system of equations that model the evolution of the hidden state over time. By finding the hidden state,
we can then make predictions or forecasts based on the observed data. Key features of complex data are that
they are noisy and the system may be evolving stochastically or randomly, which may prevent the determination
of the true state of the system. Thus, the approach we use is to try to quantify uncertainty through examining
error bounds or analyzing scenarios based on probability.

In addition to performing synthetic experiments, my research focus includes real-world applications. I have
had the opportunity to become a guest researcher at National Institute of Standards and Technology (NIST)
through a collaboration with Dr. Zeeshan Ahmed. For NIST, I am researching a unique defect in diamond
called the nitrogen-vacancy (NV) center, where in place of two carbon atoms in the diamond carbon lattice,
there is a nitrogen atom and a missing atom. The nitrogen-vacancy is sensitive to temperature, pressure, and
electric and magnetic fields, which affect the quantum state defined by its Hamiltonian. However, there is a
complex forward model that relates these parameters to spectroscopy curves that can be measured in a lab.
This is an ideal example of an inverse problem, since NIST would like to use these NV diamonds as sensors
(metrology). Specifically, I am looking into the promising applications of this quantum defect in quantum
metrology and quantum information processing (QIP). My research group comprises of my advisor Dr. Tyrus
Berry, my collaborator at NIST Dr. Zeeshan Ahmed, as well as second year graduate students Shraddha Rajpal
and Jeanie Schreiber, whom I am mentoring. Together, we are working on the NV diamond sensor system where
we plan to treat the estimated state as a probability distribution.

I consider uncertainty quantification to be a very exciting area of research due to the great potential impact
it has for applications such as weather and climate predictions, and disease spread. For example, let us suppose
we are given data of current weather patterns observed from satellites and past geological events observed from
tree rings, ice cores and varves. To understand the evolution of the climate, we estimate the hidden states
we are seeking, such as the mean or variance of the temperature of the planet over a long period of time. By
analyzing the uncertainty of the observed data we try to estimate the uncertainty of the hidden state. Currently,
an algorithm that achieves this is the Kalman filter. The Ensemble Kalman Filter (EnKF) was developed to
account for nonlinear dynamical systems. However, the EnKF is not optimal, since it assumes that the set
of data possesses characteristics that are generally unrealistic in nonlinear systems. My research deals with
improving upon the EnKF to achieve a more accurate estimate of the hidden state. The principal objective is to
develop a generalization of the EnKF, which I call the Higher Order Kalman Filter and I have made significant
progress toward achieving this goal.

The Kalman Filter consists of two steps: forecast and assimilation. The forecast step is our prediction step in
which the Kalman filter produces estimates of the current state variables, including their uncertainties. During
the assimilation step, which takes place after the next measurement is observed, the estimates are updated using
a weighted average. The forecast step of the EnKF is known as the unscented transform, which is a quadrature
rule that estimates the expected value. The unscented transform was designed to match the mean and covariance
of a distribution. The mean and covariance are known as the first two moments of the distribution.

In my research I have already finalized the forecast step of the Higher Order Kalman Filter by developing
the higher order unscented transform (HOUT). I achieved this by expanding the method from the first two to
the first four moments, where the third and the fourth moments are the skewness and the kurtosis, respectively.
The skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable
about its mean, whereas the kurtosis is a measure of the “tailedness” of the probability distribution. The nodes
of the HOUT are created using the CP decompositions of the first four moments. In addition, I developed a
practical algorithm for computing a non-minimal CP decomposition of tensors and the first rigorous proof of
convergence in linear time.

The methods I am developing are ideally suited for a wide variety of machine learning based applications.
In fact, one of the initiatives I am planning to carry out at NIST is incorporating machine learning methods
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into my algorithms. Specifically, we wish to establish whether machine learning would be well suited to learn
the forward model in the case when working with a blackbox model. The ensemble based methods that I am
working on for Uncertainty Quantification are the ideal tool for UQ in a machine learning model. This is because
we do not need to compute or estimate any derivatives.

In what follows, a description of my research is provided. In Section 1, we generalize uncertainty quantifi-
cation to higher moments for ensemble methods. In Section 2, we discuss methods for generalizing the Kalman
equations to higher moments.

1 Uncertainty Quantification for Higher Order Moments
We are trying to estimate the expected value of some functional f(x), E[f(X)] =

∫
f(x)p(x) dx, based on

some knowledge of the probability density function p(x). This estimate can be achieved by a quadrature rule to
approximate the expectation. A quadrature rule is a weighted sum of function values at specific points called
nodes. The unscented transform is a quadrature rule that was introduced by Julier and Uhlmann in [4] and was
further developed in [7, 5, 2, 3, 6]. The unscented transform uses the mean and covariance of a distribution to
choose quadrature nodes and weights such that the quadrature rule has as degree of exactness two. Degree of
exactness k means that a quadrature rule is exact for computing the expectation of polynomials up to degree
k. (Equivalently, we match the first k moments of the distribution.) The nodes that are used in the Unscented
Transform are called the σ-points.

Julier and Uhlmann used the rank decomposition of the covariance matrix for their σ-points. So when it
came to developing the HOUT, it was natural to postulate that finding CP decompositions of the skewness and
kurtosis would allow us to obtain new σ-points that could be used to match the higher order moments, namely,
skewness and kurtosis.

To discuss higher moments, we need to make use of the notion of tensors. While the covariance of the
distribution is represented by a matrix, the higher order moments, such as skewness and kurtosis, have to be
represented by tensors, which can be viewed as multidimensional matrices. For positive integers d and k, a
tensor T belonging to Rdk

is called a k-order tensor or simply a k-tensor. In particular, a vector can be thought
of as a 1-tensor and a matrix as a 2-tensor. To represent the moments of a distribution in tensor notation, we
make use of the following definition. Let v ∈ Rd and k a positive integer. Then the kth-order tensor product of
v, denoted by

v⊗k = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
k times

,

is the k-tensor whose entries are defined by (v⊗k)i1,...,ik = vi1 · · · vik . Thus we may represent the covariance C,
the skewness S, and the kurtosis K in tensor notation as follows

C =

∫
(x− µ)⊗2 dp(x) S =

∫
(x− µ)⊗3 dp(x) K =

∫
(x− µ)⊗4 dp(x),

where µ is the mean and p is the probability density function.

Consider a symmetric k-tensor T of dimension d, i.e. T ∈ Rdk

. By a theorem of [8], if v is the unit eigenvector
of T associated to the largest eigenvalue λ (in absolute value), then λv⊗k is the best rank-1 approximation of
T . It has been suggested in [8] that repeatedly subtracting the rank-1 approximations, namely, using T`+1 =
T` − λ`v⊗k` , where λ` is the largest eigenvalue in absolute value of T` and v` is an associated eigenvector, may
result in an approximate CP decomposition. I recently formalized this and proved the following theorem.

Theorem 1.1 (Easley & Berry 2020, [1]). Let T and T` be described as above. Then there exists an r ∈ (0, 1)
such that the residuals, ‖T`‖, decay to 0, and we recover a linear upper bound on the decay rate. This yields an
approximate CP decomposition of T :

T =

L∑
`=1

λ`v
⊗k
` +O(rL) for any L ∈ N.

Research Question 1: The above theorem requires a bound on tensor eigenvalues, which we were able to prove
for 3-tensors and 4-tensors, and determines the constant r. We wish to study how to extend these bounds to
all tensors. Moreover, we look for ways to improve the bounds, since a sharper bound would result in a faster
convergence rate.
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Given the following moments of the distribution of a random variable: the mean µ ∈ Rd, the covariance
matrix C ∈ Rd2

, the skewness tensor S ∈ Rd3

, and kurtosis tensor K ∈ Rd4

, we can use Theorem 1.1 to find the
approximate CP decompositions of S and K. The key to forming an ensemble that matches all four moments
simultaneously is to carefully balance the interactions between the moments. We were able to construct σ-points,
σi, and weights wi for i = 0, . . . , 2(d+ J + L) + 3, where J is the number of linearly independent eigenvectors
of the skewness, and L is the number of linearly independent eigenvectors of the kurtosis. We call these the
4-moment σ-points of the Higher Order Unscented Transform. For details on the specific construction of the
4-moment σ-points, see [1].

With these 4-moment σ-points, the empirical mean and empirical covariance match exactly the mean and co-
variance, and the empirical skewness and empirical kurtosis approximate the skewness and kurtosis, respectively,
up to an error term that can be made arbitrarily small.

Theorem 1.2 (Easley & Berry 2020, [1]). Let τ be a specified tolerance for the absolute error of the skewness
and kurtosis. Given the 4-moment σ-points associated with µ, C, S, and K, we have

∑N
i=−2 wi = 1,

N∑
i=−2

wiσi = µ,

N∑
i=−2

wi(σi − µ)⊗2 = C,

∣∣∣∣∣
∣∣∣∣∣

N∑
i=−2

wi(σi − µ)⊗3 − S

∣∣∣∣∣
∣∣∣∣∣
F

< τ, and

∣∣∣∣∣
∣∣∣∣∣

N∑
i=−2

wi(σi − µ)⊗4 −K

∣∣∣∣∣
∣∣∣∣∣
F

< τ.

Having already developed a strategy for balancing four moments, I conjecture that this method could be
generalized to build an ensemble for an arbitrary number of moments.

Research Question 2: Is it possible to extend our method by building an ensemble for an arbitrary number of
moments? If we succeed, we would try to analyze the limiting case as the number of moments grows to infinity.

An application of HOUT is for forecasting dynamical systems. Being able to summarize a given distribution
with a small set of points allows us to reduce the run time. In Figure 1 (B) and (C), we can see how the σ-points
for the Unscented Transform are not capturing all the variation and are located mostly in the middle, missing a
great deal, while the σ-points of the HOUT are capturing the full envelope of the distribution. The prediction
errors comparing the two methods applied to the Lorenz dynamics are shown at the bottom.
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Figure 1: Comparison between the HOUT and the standard unscented transform (SUT) when estimating the
mean E[f(X)] (top row) and higher moments of the Lorenz-63 model at various forecast horizons. In (A) we
show the Lorenz-63 attractor (black) along with an example initial ensemble (blue) and forecast ensemble (red)
used to compute the true statistics. In (B,C) we show the initial and forecast ensembles (blue) together with
the HOUT (red) and SUT (green) ensembles. Results in (D-G) show the forecast accuracy versus the forecast
horizon and are geometrically averaged over 500 different initial conditions on the attractor.
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The prediction errors show that the Higher Order Unscented Ensemble provides improved estimates of the
mean, variance, skewness and kurtosis.

2 Inverse Problems and Higher Order Kalman Filtering
The Kalman filter is a complicated inverse problem since it has a dynamically evolving state and there is noise
in both the dynamics and observations. Given the dynamical system

xk = Fxk−1 + ωk

yk = Hxk + νk,

where ωk ∼ N (0, Q) and νk ∼ N (0, R), the forecast step of the Kalman filter consists of the equations

x−k = Fx+k−1

P−k = FP+
k−1F

> +Q,

where x−k is the mean and P−k is the covariance of the forecast distribution. The assimilation step of the Kalman
filter consists of the equations

x+k = x−k +K(yk −Hx−k ), (1)
P+
k = (I −KH)P−k , (2)

where x+k is the mean and P+
k is the covariance of the posterior distribution, and K = P−H>(R+HP−H>)−1

is the Kalman gain. Equalities (1) and (2) are known as the Kalman Equations. Given a nonlinear dynamical
system

xk = f(xk−1, ωk)

yk = h(xk, νk),

in the forecast step, we can now use a higher order ensemble to forecast the first four moments, as was discussed
in the previous section. What remains to be done is to generalize the assimilation step.

Moving forward, there are several ways the Higher Order Kalman filter could be derived. The original
Kalman Filter was derived in three ways: the Bayesian approach, the Minimum Mean-Square Estimate (MMSE)
approach and the Closure approach. Since each of these leads to the same Kalman filter, each one provides a
different avenue for us to potentially generalize the Kalman Filter. We will now briefly discuss each of these in
turn and how they might be generalized to higher order Kalman Filtering.

2.1 Bayesian approach
Assume we have the prior p(x) (the probability of x) and the likelihood p(y|x) (the probability of y given x).
We wish to find the posterior p(x|y) (probability of x given y). By Bayes’ law,

p(x|y) ∝ p(y|x)p(x).

Since both the likelihood and prior are Gaussian, the posterior is Gaussian as well. Writing the likelihood and
the prior as p(y|x) = e−

1
2 (y−Hx)>R−1(y−Hx) and p(x) = e−

1
2 (x−x

−)>(P+)−1(x−x−), we get

p(x|y) ∝ e− 1
2 (y−Hx)>R−1(y−Hx)e−

1
2 (x−x

−)>(P+)−1(x−x−).

Thus, we derive the mean and covariance of the posterior, x+ and P+, respectively, where we define

P+ =
(
H>R−1H + (P−)

)−1
and x+ = P+

(
H>R−1y + (P−)−1x−

)
.

Reformulating x+, we get x+ = x− +K(y −Hx−) where K = P−H>(R+HP−H>)−1 is the Kalman gain.

Research Question 3: How can we generalize the Bayesian approach for the first four moments? A way to
potentially achieve this is, instead of using a likelihood and prior that are exponentials with a quadratic function
as the exponent, we use exponentials with a quartic function as the exponent. Thus instead of having Gaussian
noise, we would allow a much more general class of noise.
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The nice feature about the Gaussian is that the mean and covariance can be immediately derived after
completing the square in the exponent. This feature is lost when we deal with quartics. So there is an algebraic
problem of how we complete the tesseract. We wish to use Bayes’ law so we get

p(x|y) ∝ ep(x)eq(x),

where p(x) and q(x) are quartic polynomials, and we wish to write it in the form p(x|y) ∝ ep̂(x), where p̂(x)
is a quartic polynomial. The real challenge will be figuring out the connection between the moments and the
coefficients to this polynomial.

2.2 Minimum Mean-Square Estimate (MMSE)
The Kalman filter can be derived by making the ansatz

x̂k|k =
[
Ak Bk

] [x̂k|k−1
ŷk

]
= Akx̂k|k−1 +Bkŷk,

which is called a linear filter since the next estimate is a linear combination of the previous estimate and the
observation. Constraining the filter to be unbiased (i.e. E[x̂k|k] = xk), we find that Ak = I−BkHk, so the filter
becomes

x̂k|k = (I −BkHk)x̂k|k−1 +Bkŷk.

Minimizing over all possible Bk, we find that the minimum is achieved by the Kalman gain matrix, so Bk = Kk.
This gives the MMSE filter

x̂k|k = (I −KkHk)x̂k|k−1 +Kkŷk,

which is identical to the Kalman filter.

Research Question 4: How can we generalize the MMSE approach for the first four moments? One possibility
is to look for optimal quadratic filters. We propose a quadratic ansatz as follows:

x̂k|k = Ck

[
x̂k|k−1
ŷk

]
+Dk ×3

[
x̂k|k−1
ŷk

]
×2

[
x̂k|k−1
ŷk

]
,

where Ck is a n× (n+m) matrix and Dk is a n× (n+m)× (n+m) 3-tensor in which n is the dimension of
the state and m is the dimension of the observation.

We still want an unbiased filter and to minimize the variance. We will probably have room for more
constraints, and could even consider minimizing the kurtosis to help us look for the best possible Ck and Dk.
There are some concerns, however. The linear filter has some nice properties that we are forced to give up by
switching to this more strongly nonlinear form. Since stability might be an issue with a quadratic filter, we may
need to use our constraints to enforce stability.

2.3 Closure approach
The evolution of the posterior probability density, p(x, t), is described by the Kushner partial differential equation

dp = L∗p dt+ p(h− h)R−1 dz.

The operator

L∗p = −
∑
i

∂

∂xi
(fip) +

∑
i,j

∂2

∂xj∂xi
(Qijp)

is the Kolmogorov Forward operator, where Qij =
1
2 (qq

>)ij =
1
2

∑
k qikqjk is the system noise covariance matrix,

h is the observation function, h = Ep[h(x, t)] =
∫
h(x, t)p(x, t) dx is the expected observation, Rij = (rr>)ij =∑

k rikrjk is the observation noise covariance matrix, dz = dy − hdt is the innovation process, and dy denotes
the true observations.

Starting from the Kushner partial differential equation, we can compute ordinary differential equations for
the mean and variance. Recalling the mean µ(t) = E[x] =

∫
xp(x, t) dx, its derivative is given by

µ̇(t) =

∫
x
∂

∂t
p(x, t) dx.
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We then replace ∂
∂tp(x, t) with the right-hand side of the Kushner equation and integrate by parts, obtaining

µ̇(t) = (f(x0) +Df(x0)(µ− x0)) dt+ σDh(x0)
>R−1 dz.

Similarly, we can compute a dynamical system for the covariance

σ̇ =
(
σF> + Fσ +Q− σH>R−1Hσ>

)
dt+ S ·H>R−1 dz,

where S is the skewness tensor. If we assume the skewness equals zero (i.e. assume the distribution is Gaussian),
this closure gives us the Kalman equations.

Research Question 5: How can we generalize the closure approach for the first four moments? We could go
further by deriving the ordinary differential equations for the skewness and kurtosis. Instead of assuming that
the skewness is zero, we could find new closures for the first four moments rather than just the first two.

One downside is that the equation for the kurtosis will involve the fifth moment, so we would have to make
a closure there. The easiest approach would be to just assume that the fifth moment is zero. We will try to find
more realistic closures in the future.
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