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Our goal is to estimate the expectation of the expected values of some functionals
on multivariate non-Gaussian distributions,

E[f (X )] =

∫
f (x)p(x) dx .

Our idea is to do this by generating a small number of quadrature points for the

weighted integral, i.e. E[f (X )] ≈
N∑
i=1

wif (xi) where xi are nodes and wi are

weights for i = 1, ...,N . Note that the largest value of m so that all polynomials
of degree m and below are integrated exactly is called degree-of-exactness.

Background
Scaled Unscented Transform

Julier’s Idea: Suppose we choose the right nodes so that our quadrature has
degree of exactness 2, i.e. matches the first two moments exactly.

The σ–points of the Scaled Unscented Transform (SUT)

Suppose we are given the first two moments, the mean µ ∈ Rd and the
covariance C ∈ Rd×d . Then for some β ∈ R the σ–points are defined by

σ0 = µ and σi =

{
µ + β

√
C i if i = 1, . . . , d

µ− β
√
C i−d if i = d + 1, . . . , 2d

Note: The choice of β can have significant impact on the effectiveness of the

transform and
d∑
i=1

√
C i

√
C
>
i = C

Empirical mean and Empirical covariance

For β =
√
d , we have this derivation

E[X ] =
1

2d

2d∑
i=1

σi =
1

2d

d∑
i=1

2µ =
1

2d
(2dµ) = µ

E[(X − µ)(X − µ)>] =
1

2d

2d∑
i=1

(σi − µ)(σi − µ)> =
1

2d
(2dCµ) = C

Our goal is to generalize the unscented transform to higher moments.

Tensors

Tensors are basically multidimensional matrices. For example the skewness is

S =

∫
(x − µ)⊗3p(x) dx , Sijk =

∫
(x − µ)i(x − µ)j(x − µ)kp(x) dx

Similarly, the kurtosis is defined as K =

∫
(x − µ)⊗4p(x) dx where

(x − µ)⊗n = (x − µ)⊗ (x − µ)⊗ · · · ⊗ (x − µ)︸ ︷︷ ︸
n times

Note that moments are symmetric, i.e.Mi1···in = Mp(i1···in) for any permutation p.
Motivated by the unscented transform we first need to find the generalized rank 1
decomposition,

S =
∑
i

x⊗3
i K =

∑
i

x⊗4
i

It’s been shown that finding the best rank 1 decomposition is NP-complete.

Approximate Rank 1 Decomposition
A generalization of Normalized Power Iteration (NPI) known as the Symmetric
Higher-Order Power Method (S-HOPM) [2] is used to find the eigenvector u
associated to the largest eigenvalue λ in absolute value of the tensor T . A
theorem of [2] states that λu⊗k is the best rank 1 approximation of T , namely

‖T − λu⊗k‖
is minimized over all possible λ, ‖u‖ = 1. It was suggested in [2] that repeatedly
subtracting the rank 1 approximations may result in an approximate rank 1
decomposition. The following theorem shows that this process converges.

Theorem
Let T be a k-order symmetric tensor with size n, i.e. T ∈ Rnk. Consider the
process of finding an approximate rank-1 decomposition of T by starting from
T0 = T and setting T`+1 = T` − λ`v⊗k` where λ` is the largest eigenvalue of T`
and v` is the associated eigenvector. Then ‖T`‖F → 0 and there exists a constant

c ∈ (0, 1] such that λ0 ≥ c|Ti1...ik| and for r =

√
1− c2

nk
∈ (0, 1)

‖T`+1‖F
‖T`‖F

≤ r and T =
L∑
`=1

λ`v
⊗k
` +O(rL)

for all L ∈ N.

Higher Order Unscented Ensemble
Suppose we are given the first 4 moments: µ ∈ Rd , C ∈ Rd2

, S ∈ Rd3
, and

K ∈ Rd4
such that S =

J∑
i=1

ṽi
⊗3 and K =

L∑
i=1

si ũi
⊗4. Now denote µ̃ =

J∑
i=1

ṽi ,

C̃ =
L∑

i=1
si ũi
⊗2, µ̂ =

(
1− dβ−2 − L̂δ−4

)
µ− γ−2µ̃, where L̂ =

L∑
i=1

si and

Ĉ = C − 1

ρ2
C̃ for any ρ >

√
λC̃max

λCmin
.

The 4 moment σ–points of the Higher Order Unscented Transform (HOUT)
We define the 4 moment σ-points by

σi =



µ if i = −2

µ + αµ̂ if i = −1

µ− αµ̂ if i = 0

µ + β
√
Ĉ i if i = 1, . . . , d

µ− β
√
Ĉ i−d if i = d + 1, . . . , 2d

µ + γṽi−2d if i = 2d + 1, . . . , 2d + J

µ− γṽi−2d−J if i = 2d + J + 1, . . . , 2d + 2J

µ + δũi−2d−2J if i = 2d + 2J + 1, . . . , 2d + 2J + L

µ− δũi−2d−2J−L if i = 2d + 2J + L + 1, . . . ,N
and the corresponding weights by w−2 = 1− dβ−2 − L̂δ−4, w−1 = 1

2α, w0 = − 1
2α,

w1, . . . ,w2d = 1
2β2, w2d+1, . . . ,w2d+J = 1

2γ3, w2d+J+1, . . . ,w2d+2J = − 1
2γ3, and

wi =

{
1

2δ4si−2d−2J if i = 2d + 2J + 1, . . . , 2d + 2J + L
1

2δ4si−2d−2J−L if i = 2d + 2J + L + 1, . . . ,N
For convenience, we denote N = 2(d + J + L).

Theorem
Given the four moment σ-points associated with µ, C , S , and K , then for any

δ >

√
λC̃max

λCmin
as defined above and α, β, γ we have

N∑
i=−1

wiσi = µ

N∑
i=−1

wi(σi − µ)⊗3 = S + α2µ̂⊗3

N∑
i=−1

wi(σi − µ)⊗2 = C
N∑

i=−1

wi(σi − µ)⊗4 = K + β2
d∑
i=1

√
Ĉ
⊗4

i

Results
Given a distribution as shown on the
right, our ensemble’s σ-points are shown
in black, red, green and magenta. The
black σ-points show our estimate of µ,
the red our estimate of C , the green our
estimate of S and the magenta our esti-
mate of K .

We conducted a numerical experiment
where we generated a two-dimensional
distribution and passed our ensemble through several polynomial functions of the
form f (x) = ax + bcxn for n = 2, 3, 4, 5 where a and b are made random 1× 2
vectors. To show the influence of the strength of the nonlinearity, we sweep
through different values of c . We compare the HOUT and SUT for estimating the
mean and variance of the output of each of these polynomials.
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f (x) = ax + bcx2 f (x) = ax + bcx3 f (x) = ax + bcx4 f (x) = ax + bcx5

We can see from the figure above that, as expected, the HOUT is exact for the
means up to n = 4 and for the variances up to n = 2 due to having degree of
exactness four. For higher degree polynomials, the HOUT has comparable or
better performance.
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